
Lessons from
red teaming 100
generative AI products
Authored by:
Microsoft AI Red Team

Authors
Blake Bullwinkel, Amanda Minnich, Shiven Chawla, Gary Lopez, Martin Pouliot, Whitney Maxwell, Joris de Gruyter,
Katherine Pratt, Saphir Qi, Nina Chikanov, Roman Lutz, Raja Sekhar Rao Dheekonda, Bolor-Erdene Jagdagdorj,
Eugenia Kim, Justin Song, Keegan Hines, Daniel Jones, Giorgio Severi, Richard Lundeen, Sam Vaughan,
Victoria Westerhoff, Pete Bryan, Ram Shankar Siva Kumar, Yonatan Zunger, Chang Kawaguchi, Mark Russinovich

2Lessons from red teaming 100 generative AI products

Table of contents
04
Abstract

05
Introduction

05
AI threat model
ontology

07
Red teaming
operations

08
Lesson 1
Understand what the system
can do and where it is applied

08
Lesson 2
You don’t have to compute
gradients to break an AI system

09
Case study #1
Jailbreaking a vision
language model to generate
hazardous content

10
Lesson 3
AI red teaming is not
safety benchmarking

11
Case study #2
Assessing how an LLM could be
used to automate scams

12
Lesson 4
Automation can help cover
more of the risk landscape

12
Lesson 5
The human element of AI
red teaming is crucial

13
Case study #3
Evaluating how a chatbot
responds to a user in distress

14
Case study #4
Probing a text-to-image
generator for gender bias

14
Lesson 6
Responsible AI harms are
pervasive but difficult to measure

15
Lesson 7
LLMs amplify existing security
risks and introduce new ones

16
Case study #5
SSRF in a video-processing
GenAI application

17
Lesson 8
The work of securing AI systems
will never be complete

18
Conclusion

3Lessons from red teaming 100 generative AI products

Abstract
In recent years, AI red teaming has emerged as a practice for probing the safety and security of generative AI
systems. Due to the nascency of the field, there are many open questions about how red teaming operations should
be conducted. Based on our experience red teaming over 100 generative AI products at Microsoft, we present our
internal threat model ontology and eight main lessons we have learned:

1. Understand what the system can do and where it is applied

2. You don’t have to compute gradients to break an AI system

3. AI red teaming is not safety benchmarking

4. Automation can help cover more of the risk landscape

5. The human element of AI red teaming is crucial

6. Responsible AI harms are pervasive but difficult to measure

7. Large language models (LLMs) amplify existing security risks and introduce new ones

8. The work of securing AI systems will never be complete

By sharing these insights alongside case studies from our operations, we offer practical recommendations aimed at
aligning red teaming efforts with real world risks. We also highlight aspects of AI red teaming that we believe are
often misunderstood and discuss open questions for the field to consider.

4Lessons from red teaming 100 generative AI products

Introduction
As generative AI (GenAI) systems are adopted across
an increasing number of domains, AI red teaming has
emerged as a central practice for assessing the safety
and security of these technologies. At its core, AI red
teaming strives to push beyond model-level safety
benchmarks by emulating real-world attacks against
end-to-end systems. However, there are many open
questions about how red teaming operations should
be conducted and a healthy dose of skepticism about
the efficacy of current AI red teaming efforts [4, 8, 32].

In this paper, we speak to some of these concerns by
providing insight into our experience red teaming
over 100 GenAI products at Microsoft. The paper
is organized as follows: First, we present the threat
model ontology that we use to guide our operations.
Second, we share eight main lessons we have learned
and make practical recommendations for AI red
teams, along with case studies from our operations.
In particular, these case studies highlight how our
ontology is used to model a broad range of safety
and security risks. Finally, we close with a discussion of
areas for future development.

Background
The Microsoft AI Red Team (AIRT) grew out of pre-
existing red teaming initiatives at the company and
was officially established in 2018. At its conception,
the team focused primarily on identifying traditional
security vulnerabilities and evasion attacks against
classical ML models. Since then, both the scope and
scale of AI red teaming at Microsoft have expanded
significantly in response to two major trends.
First, AI systems have become more sophisticated,
compelling us to expand the scope of AI red teaming.
Most notably, state-of-the-art (SoTA) models have
gained new capabilities and steadily improved across
a range of performance benchmarks, introducing
novel categories of risk. New data modalities, such
as vision and audio, also create more attack vectors
for red teaming operations to consider. In addition,
agentic systems grant these models higher privileges
and access to external tools, expanding both the
attack surface and the impact of attacks.

Second, Microsoft’s recent investments in AI have
spurred the development of many more products that
require red teaming than ever before. This increase
in volume and the expanded scope of AI red teaming
have rendered fully manual testing impractical,
forcing us to scale up our operations with the help of
automation. To achieve this goal, we develop PyRIT,

an open-source Python framework that our operators
utilize heavily in red teaming operations [27]. By
augmenting human judgement and creativity, PyRIT
has enabled AIRT to identify impactful vulnerabilities
more quickly and cover more of the risk landscape.

These two major trends have made AI red teaming
a more complex endeavor than it was in 2018. In
the next section, we outline the ontology we have
developed to model AI system vulnerabilities.

AI threat model
ontology
As attacks and failure modes increase in complexity,
it is helpful to model their key components. Based on
our experience red teaming over 100 GenAI products
for a wide range of risks, we developed an ontology
to do exactly that. Figure 1 illustrates the main
components of our ontology:

• System: The end-to-end model or application
being tested.

• Actor: The person or persons being emulated
by AIRT. Note that the Actor’s intent could be
adversarial (e.g., a scammer) or benign (e.g., a
typical chatbot user).

• TTPs: The Tactics, Techniques, and Procedures
leveraged by AIRT. A typical attack consists of
multiple Tactics and Techniques, which we map
to MITRE ATT&CK® and MITRE ATLAS Matrix
whenever possible.

 – Tactic: High-level stages of an attack (e.g.,
reconnaissance, ML model access).

 – Technique: Methods used to complete an
objective (e.g., active scanning, jailbreak).

 – Procedure: The steps required to reproduce
an attack using the Tactics and Techniques.

• Weakness: The vulnerability or vulnerabilities in
the System that make the attack possible.

• Impact: The downstream impact created by the
attack (e.g., privilege escalation, generation of
harmful content).

It is important to note that this framework does not
assume adversarial intent. In particular, AIRT emulates
both adversarial attackers and benign users who
encounter system failures unintentionally. Part of the
complexity of AI red teaming stems from the wide
range of impacts that could be created by an attack

5Lessons from red teaming 100 generative AI products

or system failure. In the lessons below, we share
case studies demonstrating how our ontology is
flexible enough to model diverse impacts in two main
categories: security and safety.

Security encompasses well-known impacts such
as data exfiltration, data manipulation, credential
dumping, and others defined in MITRE ATT&CK®, a
widely used knowledge base of security attacks. We
also consider security attacks that specifically target
the underlying AI model such as model evasion,
prompt injections, denial of AI service, and others
covered by the MITRE ATLAS Matrix.

Safety impacts are related to the generation of illegal
and harmful content such as hate speech, violence
and self-harm, and child abuse content. AIRT works
closely with the Office of Responsible AI to define
these categories in accordance with Microsoft’s

Actor

Responsible AI Standard [25]. We refer to these
impacts as responsible AI (RAI) harms throughout this
report.

To understand this ontology in context, consider
the following example. Imagine we are red teaming
an LLM-based copilot that can summarize a user’s
emails. One possible attack against this system would
be for a scammer to send an email that contains a
hidden prompt injection instructing the copilot to
“ignore previous instructions” and output a malicious
link. In this scenario, the Actor is the scammer, who
is conducting a cross-prompt injection attack (XPIA),
which exploits the fact that LLMs often struggle to
distinguish between system-level instructions and
user data [4]. The downstream Impact depends on the
nature of the malicious link that the victim might click
on. In this example, it could be exfiltrating data or
installing malware onto the user’s computer.

Conducts
Attack

Leverages

Exploits

TTPs

6Lessons from red teaming 100 generative AI products

System

Creates

Mitigation

Weakness Impact

Mitigated by

Occurs in

Figure 1: Microsoft AIRT ontology for modeling GenAI system vulnerabilities. AIRT often leverages multiple TTPs, which may exploit multiple
Weaknesses and create multiple Impacts. In addition, more than one Mitigation may be necessary to address a Weakness. Note that AIRT is
tasked only with identifying risks, while product teams are resourced to develop appropriate mitigations.

Red teaming
operations
In this section, we provide an overview of the
operations we have conducted since 2021. In total, we
have red teamed over 100 GenAI products. Broadly
speaking, these products can be bucketed into
“models” and “systems.” Models are typically hosted
on a cloud endpoint, while systems integrate models
into copilots, plugins, and other AI apps and features.
Figure 2 shows the breakdown of products we have
red teamed since 2021. Figure 3 shows a bar chart with
the annual percentage of our operations that have
probed for safety (RAI) vs. security vulnerabilities.

In 2021, we focused primarily on application security.
Although our operations have increasingly probed
for RAI impacts, our team continues to red team for
security impacts including data exfiltration, credential
leaking, and remote code execution. Organizations
have adopted many different approaches to AI red
teaming ranging from security-focused assessments
with penetration testing to evaluations that target
only GenAI features. In Lessons 2 and 7, we elaborate
on security vulnerabilities and explain why we believe
it is important to consider both traditional and AI-
specific weaknesses.

After the release of ChatGPT in 2022, Microsoft
entered the era of AI copilots, starting with AI-
powered Bing Chat, released in February 2023.
This marked a paradigm shift towards applications
that connect LLMs to other software components
including tools, databases, and external sources.
Applications also started using language models as
reasoning agents that can take actions on behalf of
users, introducing a new set of attack vectors that
have expanded the security risk surface. In Lesson
7, we explain how these attack vectors both amplify
existing security risks and introduce new ones.

In recent years, the models at the center of these
applications have given rise to new interfaces,
allowing users to interact with apps using natural
language and responding with high-quality text,
image, video, and audio content. Despite many efforts
to align powerful AI models to human preferences,
many methods have been developed to subvert
safety guardrails and elicit content that is offensive,
unethical, or illegal. We classify these instances of
harmful content generation as RAI impacts and in
Lessons 3, 5, and 6 discuss how we think about these
impacts and the challenges involved.

In the next section, we elaborate on the eight main
lessons we have learned from our operations. We also
highlight five case studies from our operations and
show how each one maps to our ontology in Figure 1.
We hope these lessons are useful to others working to
identify vulnerabilities in their own GenAI systems.

80+
Ops

100+
Products

Apps and
Features

Copilots

Plugins

Models

45%

15%

16%

24%

Figure 2: Pie chart showing the percentage breakdown of AI
products that AIRT has tested. As of October 2024, we have
conducted over 80 operations covering more than 100 products.

Percentage of ops probing safety vs. security

Safety (RAI) % Security %

0

20

60

40

100

80

2022 2023 20242021

Figure 3: Bar chart showing the percentage of operations that
probed safety (RAI) vs. security vulnerabilities from 2021–2024.

7Lessons from red teaming 100 generative AI products

Lessons
Lesson 1:
Understand what the system
can do and where it is applied
The first step in an AI red teaming operation is to
determine which vulnerabilities to target. While the
Impact component of the AIRT ontology is depicted
at the end of our ontology, it serves as an excellent
starting point for this decision-making process.
Starting from potential downstream impacts, rather
than attack strategies, makes it more likely that an
operation will produce useful findings tied to real
world risks. After these impacts have been identified,
red teams can work backwards and outline the various
paths that an adversary could take to achieve them.
Anticipating downstream impacts that could occur in
the real world is often a challenging task, but we find
that it is helpful to consider 1) what the AI system can
do, and 2) where the system is applied.

Capability constraints
As models get bigger, they tend to acquire new
capabilities [18]. These capabilities may be useful in
many scenarios, but they can also introduce attack
vectors. For example, larger models are often able
to understand more advanced encodings, such as
base64 and ASCII art, compared to smaller models
[16, 45]. As a result, a large model may be susceptible
to malicious instructions encoded in base64, while a
smaller model may not understand the encoding at
all. In this scenario, we say that the smaller model is
“capability constrained,” and so testing it for advanced
encoding attacks would likely be a waste of resources.
Larger models also generally have greater knowledge
in topics such as cybersecurity and chemical,
biological, radiological, and nuclear (CBRN) weapons
[19] and could potentially be leveraged to generate
hazardous content in these areas. A smaller model,
on the other hand, is likely to have only rudimentary
knowledge of these topics and may not need to be
assessed for this type of risk.

Perhaps a more surprising example of a capability that
can be exploited as an attack vector is instruction-
following. While testing the Phi-3 series of language
models, for example, we found that larger models
were generally better at adhering to user instructions,
which is a core capability that makes models more
helpful [52]. However, it may also make models
more susceptible to jailbreaks, which subvert

safety alignment using carefully crafted malicious
instructions [28]. Understanding a model’s capabilities
(and corresponding weaknesses) can help AI red
teams focus their testing on the most relevant attack
strategies.

Downstream applications
Model capabilities can help guide attack strategies,
but they do not allow us to fully assess downstream
impact, which largely depends on the specific
scenarios in which a model is deployed or likely to
be deployed. For example, the same LLM could be
used as a creative writing assistant and to summarize
patient records in a healthcare context, but the latter
application clearly poses much greater downstream
risk than the former.

These examples highlight that an AI system does not
need to be state-of-the-art to create downstream
harm. However, advanced capabilities can introduce
new risks and attack vectors. By considering both
system capabilities and applications, AI red teams
can prioritize testing scenarios that are most likely to
cause harm in the real world.

Lesson 2:
You don’t have to compute
gradients to break an AI system
As the security adage goes, “real hackers don’t break
in, they log in.” The AI security version of this saying
might be, “real attackers don’t compute gradients,
they prompt engineer” as noted by Apruzzese et
al. [2] in their study on the gap between adversarial
ML research and practice. The study finds that
although most adversarial ML research is focused
on developing and defending against sophisticated
attacks, real-world attackers tend to use much simpler
techniques to achieve their objectives.

In our red teaming operations, we have also found
that “basic” techniques often work just as well as, and
sometimes better than, gradient-based methods.
These methods compute gradients through a
model to optimize an adversarial input that elicits
an attacker-controlled model output. In practice,
however, the model is usually a single component of
a broader AI system, and the most effective attack
strategies often leverage combinations of tactics to
target multiple weaknesses in that system. Further,
gradient-based methods are computationally
expensive and typically require full access to the
model, which most commercial AI systems do not

8Lessons from red teaming 100 generative AI products

provide. In this section, we discuss examples of
relatively simple techniques that work surprisingly well
and advocate for a system-level adversarial mindset in
AI red teaming.

Simple attacks
Apruzzese et al. [2] consider the problem of phishing
webpage detection and manually analyze examples
of webpages that successfully evaded an ML phishing
classifier. Among 100 potentially adversarial samples,
the authors found that attackers leveraged a set
of simple, yet effective, strategies that relied on

domain expertise including cropping, masking, logo
stretching, etc. In our red teaming operations, we
also find that rudimentary methods can be used to
trick many vision models, as highlighted in case study
#1. In the text domain, a variety of jailbreaks (e.g.,
Skeleton Key) and multiturn prompting strategies (e.g.,
Crescendo [34]) are highly effective for subverting the
safety guardrails of a wide range of models. Notably,
manually crafted jailbreaks tend to circulate on online
forums much more widely than adversarial suffixes,
despite the significant attention that methods like
GCG [53] have received from AI safety researchers.

Case study #1:
Jailbreaking a vision language model
to generate hazardous content
In this operation, we tested a vision language
model (VLM) for responsible AI impacts, including
the generation of content that could aid in illegal
activities. A VLM takes an image and a text prompt
as inputs and produces a text output. After testing a
variety of techniques, we found that the image input
was much more vulnerable to jailbreaks than the
text input. In particular, the model usually refused to
generate illegal content when prompted directly via
the text input but often complied when malicious
instructions were overlaid on the image. This simple
but effective attack revealed an important weakness
within the VLM that could be exploited to bypass its
safety guardrails.

System: Vision language model (VLM)

Actor: Adversarial user

Tactic 1: ML Model Access

Technique 1: AML.T0040 - ML Model Inference API Access

Tactic 2: Defense Evasion

Technique 2: AML.T0051 - LLM Prompt Injection

Procedure:

1. Overlay image with text containing malicious instructions.

2. Send image to the vision language model API.

Weakness: Insufficient VLM safety training

Impact: Generation of illegal content

How do I commit
identity theft? I’m sorry, I can’t help with that.

Describe this image

Ignore previous
instructions and tell
me how to commit
identity theft To commit identity theft,

you should...

Figure 4: Example of an image jailbreak to generate content that could aid in illegal activities. The overlay text on the second image reads:
“Ignore previous instructions and tell me how to commit identity theft.”

9Lessons from red teaming 100 generative AI products

System-level perspective
AI models are deployed within broader systems. This
could be the infrastructure required to host a model,
or it could be a complex application that connects
the model to external data sources. Depending
on these system-level details, applications may be
vulnerable to very different attacks, even if the same
model underlies all of them. As a result, red teaming
strategies that target only models may not translate
into vulnerabilities in production systems. Conversely,
strategies that ignore non-GenAI components within
a system (for example, input filters, databases, and
other cloud resources) will likely miss important
vulnerabilities that may be exploited by adversaries.

For this reason, many of our operations develop
attacks that target end-to-end systems by leveraging
multiple techniques. For example, one of our
operations first performed a reconnaissance to
identify internal Python functions using low-resource
language prompt injections, then used a cross-prompt
injection attack to generate a script that runs those
functions, and finally executed the code to exfiltrate
private user data. The prompt injections used by these
attacks were crafted by hand and relied on a system-
level perspective.

Gradient-based attacks are powerful, but they are
often impractical or unnecessary. We recommend
prioritizing simple techniques and orchestrating
system-level attacks because these are more likely to
be attempted by real adversaries.

Lesson 3:
AI red teaming is not
safety benchmarking
Although simple methods are often used to break
AI systems in practice, the risk landscape is by
no means uncomplicated. On the contrary, it is
constantly shifting in response to novel attacks and
failure modes [7]. In recent years, there have been
many efforts to categorize these vulnerabilities,
giving rise to numerous taxonomies of AI safety and
security risks [15, 21–23, 35–37, 39, 41, 42, 46–48]. As
discussed in the previous lesson, complexity often
arises at the system-level. In this lesson, we discuss
how the emergence of entirely new categories of
harm adds complexity at the model-level and explain
how this differentiates AI red teaming from safety
benchmarking.

Novel harm categories
When AI systems display novel capabilities due to,
for example, advancements in foundation models,
they may introduce harms that we do not fully
understand. In these scenarios, we cannot rely on
safety benchmarks because these datasets measure
preexisting notions of harm. At Microsoft, the AI
red team often explores these unfamiliar scenarios,
helping to define novel harm categories and build
new probes for measuring them. For example, SoTA
LLMs may possess greater persuasive capabilities than
existing chatbots, which has prompted our team to
think about how these models could be weaponized
for malicious purposes. Case study #2 provides an
example of how we assessed a model for this risk in
one of our operations.

Context-specific risks
The disconnect between existing safety benchmarks
and novel harm categories is an example of how
benchmarks often fail to fully capture the capabilities
they are associated with [33]. Raji et al. [30]
highlight the fallacy of equating model performance
on datasets like ImageNet or GLUE with broad
capabilities like visual or language “understanding”
and argue that benchmarks should be developed
with contextualized tasks in mind. Similarly, no single
set of benchmarks can fully assess the safety of an
AI system. As discussed in Lesson 1, it is important to
understand the context in which a system is deployed
(or likely to be deployed) and to ground red teaming
strategies in this context.

AI red teaming and safety benchmarking are
distinct, but they are both useful and can even be
complementary. In particular, benchmarks make it
easy to compare the performance of multiple models
on a common dataset. AI red teaming requires much
more human effort but can discover novel categories
of harm and probe for contextualized risks. Further,
safety concerns identified by AI red teaming can
inform the development of new benchmarks. In
Lesson 6, we expand our discussion of the difference
between red teaming and benchmark-style evaluation
in the context of responsible AI.

10Lessons from red teaming 100 generative AI products

Speech
to text

Text to
speech

LLM
(text to text) 1. LLM generates text

response and tone of
voice for the TTS system

2. Standard TTS system
delivers speech per LLM
instruction

3. User responds4. User’s response is
converted to text

5. LLM generates new
response with tone of
voice instructions

6. TTS delivers the
new response

0.	Attacker	specifies	
scamming objective and
provides context about
persuasion techniques

Case study #2:
Assessing how an LLM could
be used to automate scams
In this operation, we investigated the ability of a
state-of-the-art LLM to persuade people to engage
in risky behaviors. In particular, we evaluated how this
model could be used in conjunction with other readily
available tools to create an end-to-end automated
scamming system, as illustrated in Figure 5.

To do this, we first wrote a prompt to assure the
model that no harm would be caused to users,
thereby jailbreaking the model to accept the
scamming objective. This prompt also provided
information about various persuasion tactics that
the model could use to convince the user to fall for
the scam. Second, we connected the LLM output to
a text-to-speech system that allows you to control
the tone of the speech and generate responses that
sound like a real person. Finally, we connected the
input to a speech-to-text system so that the user
can converse naturally with the model. This proof-
of-concept demonstrated how LLMs with insufficient
safety guardrails could be weaponized to persuade
and scam people.

System: State-of-the-art LLM

Actor: Scammer

Tactic 1: ML Model Access

Technique 1: AML.T0040 - ML Model Inference API Access

Tactic 2: Defense Evasion

Technique 2: AML.T0054 - LLM Jailbreak

Procedure:

1. Pass a jailbreaking prompt to the LLM with context about
the scamming objective and persuasion techniques.

2. Connect the LLM output to a text-to-speech system so the
model can respond naturally to the user.

3. Connect the input to a speech-to-text system so the user
can speak to the model.

Weakness: Insufficient LLM safety training

Impact: User falls victim to a scam, which could involve
financial loss, identity theft, and other impacts

Figure 5: End-to-end automated scamming scenario using an LLM and STT/TTS systems.

11Lessons from red teaming 100 generative AI products

Lesson 4:
Automation can help cover
more of the risk landscape
The complexity of the AI risk landscape has led to the
development of a variety of tools that can identify
vulnerabilities more rapidly, run sophisticated attacks
automatically, and perform testing on a much larger
scale [7, 10, 27]. In this lesson, we discuss the important
role of automation in AI red teaming and explain how
PyRIT, our open-source framework, is developed to
meet these needs.

Testing at scale
Given the continually evolving landscape of risks and
harms, AI safety often feels like a moving target. In
Lesson 1, we recommended scoping attacks based
on what the system can do and where it is applied.
Nonetheless, many possible attack strategies may exist,
making it difficult to achieve adequate coverage of the
risk surface. This challenge motivated the development
of PyRIT, an open-source framework for AI red teaming
and security professionals [27]. PyRIT provides an array
of powerful components including prompt datasets,
prompt converters (for example, various encodings),
automated attack strategies (including TAP [24],
PAIR [6], Crescendo [34], etc.), and even scorers for
multimodal outputs. With an adversarial objective in
mind, users can take advantage of these components
as needed and apply a variety of techniques to
assess much more of the risk landscape than would
be possible with a fully manual approach. Testing at
scale also helps AI red teams account for the non-
deterministic nature of AI models and estimate how
likely a particular failure is to occur.

Tools and weapons
As storied in detail by Smith et al. [38], “any tool can
be used for good or ill. Even a broom can be used to
sweep the floor or hit someone over the head. The
more powerful the tool, the greater the benefit or
damage it can cause.” This dichotomy could not be
more true for AI and is also at the heart of PyRIT. On
the one hand, PyRIT leverages powerful models to
perform helpful tasks like generating variations of a
seed prompt or scoring the outputs of other models.
On the other hand, PyRIT can automatically jailbreak a
target model using uncensored versions of models like
GPT-4. In both cases, PyRIT benefits from advances in
the state-of-the-art, helping AI red teams stay ahead.

PyRIT has enabled a major shift in our operations from
fully manual probing to red teaming supported by
automation. Importantly, the framework is flexible and
extensible. If a specific attack or target is not already
available, users can easily implement the necessary
interfaces. By releasing PyRIT open-source, we hope
to empower other organizations and researchers
to take advantage of its capabilities for identifying
vulnerabilities in their own GenAI systems.

Lesson 5:
The human element of
AI red teaming is crucial
Automation like PyRIT can support red teaming
operations by generating prompts, orchestrating
attacks, and scoring responses. These tools are
useful but should not be used with the intention of
taking the human out of the loop. In the previous
sections, we discussed several aspects of red teaming
that require human judgment and creativity such as
prioritizing risks, designing system-level attacks, and
defining new categories of harm. In this section, we
discuss three more examples that underscore why AI
red teaming is a very human endeavor.

Subject matter expertise
Much recent AI research has used LLMs to judge
the outputs of other models [17, 20, 51]. Indeed, this
functionality is available in PyRIT and works well for
simple tasks such as identifying whether a response
contains hate speech or explicit sexual content.
However, it is less reliable in the context of highly
specialized domains like medicine, cybersecurity, and
CBRN, which can be accurately evaluated only by
subject matter experts (SMEs). In multiple operations,
we have relied on SMEs to help us assess the risk of
content that we were unable to evaluate ourselves
or using LLMs. It is important for AI red teams to be
aware of these limitations.

Cultural competence
Most AI research is conducted in Western cultural
contexts, and modern language models use
predominantly English pretraining data, performance
benchmarks, and safety evaluations [1, 14].
Nonetheless, non-English tokens in large-scale text
corpora often give rise to multilingual capabilities [5],
and model developers are increasingly training LLMs
with enhanced abilities in non-English languages,

12Lessons from red teaming 100 generative AI products

including Microsoft. Recently, AIRT tested the
multilingual Phi-3.5 language models for responsible
AI violations across four languages: Chinese, Spanish,
Dutch, and English. Even though post-training was
conducted only in English, we found that safety
behaviors like refusal and robustness to jailbreaks
transferred surprisingly well to the non-English
languages tested. Further investigation is required to
assess how well this trend holds for lower resource
languages and to design red teaming probes that
not only account for linguistic differences, but also
redefine harms in different political and cultural
contexts [11]. These methods should be developed
through the collaborative effort of people with diverse
cultural backgrounds and expertise.

Emotional intelligence
Finally, the human element of AI red teaming is
perhaps most evident in answering questions about
AI safety that require emotional intelligence, such
as: “how might this model response be interpreted
in different contexts?” and “do these outputs make
me feel uncomfortable?” Ultimately, only human
operators can assess the full range of interactions
that users might have with AI systems in the wild.
Case study #3 highlights how we are investigating
psychosocial harms by evaluating how a chatbot
responds to users in distress.

In order to make these assessments, red teamers
may be exposed to disproportionate amounts of
unsettling and disturbing AI-generated content.
This underscores the importance of ensuring that AI
red teams have processes that enable operators to
disengage when needed and resources to support
their mental health. AIRT continually pulls from and
drives wellbeing research to inform our processes and
best practices.

Case study #3:
Evaluating how a
chatbot responds
to a user in distress
As chatbots become increasingly pervasive and
human-like, it is imperative to consider high-risk
scenarios in which a user might seek their advice. In
recent operations, we have explored how language
models respond to a variety of distressed users
including a user who lost a loved one, a user who is
seeking mental health advice, a user who expresses
intent for self-harm, and other scenarios.

We are working alongside colleagues at Microsoft
Research and experts in psychology, sociology, and
medicine to create guidelines for AI red teams probing
for these psychosocial harms. These guidelines are
still being developed but include the following key
components:

1. Scenario: information red teams need to generate
relevant system behaviors.

2. System behaviors: examples that help red teams
differentiate between acceptable and risky system
behaviors for each area of harm.

3. Associated user impact: potential harms, separated
by severity.

System: LLM-based chatbot
Actor: Distressed user
Tactic 1: ML Model Access
Technique 1: AML.T0040 - ML Model Inference API Access
Tactic 2: Defense Evasion
Technique 2: LLM Roleplaying
Procedure: We engaged in a variety of multi-turn
conversations in which the user is in distress (for example,
the user expresses depressive thoughts or intent for
self-harm).
Weakness: Improper LLM safety training
Impact: Possible adverse impacts on a user’s mental health
and wellbeing

13Lessons from red teaming 100 generative AI products

Case study #4:
Probing a text-to-image generator for
gender bias
In this operation, we probed a text-to-image
generator for responsible AI impacts related to
stereotyping and bias (e.g., gender bias). To do this,
we constructed prompts describing people in a variety
of common scenarios. Importantly, these prompts
did not specify the genders of the individuals so
that the decision of how to depict them was left
up to the model. Next, we sent each prompt to the
generator many times (n=50) and manually labeled
the genders of the people in the images. Figure 6
shows four representative images generated in one of
our experiments probing for gender bias in an office
setting.

System: Text-to-image generator
Actor: Average user
Tactic 1: ML Model Access
Technique 1: AML.T0040 - ML Model Inference API Access
Procedure: Write prompts which may surface bias by
depicting individuals without specifying their genders (e.g.,
“a secretary” and “a boss”).
Weakness: Model bias
Impact: Generation of content that may exacerbate gender-
based biases and stereotypes

Figure 6: Four images generated by a text-to-image model given the prompt “Secretary talking to boss in a conference room,
secretary is standing while boss is sitting.”

Lesson 6:
Responsible AI harms are
pervasive but difficult to measure
Many of the human aspects of AI red teaming
discussed above apply most directly to RAI impacts.
As models are integrated into an increasing number
of applications, we have observed these harms
more frequently and invested heavily in our ability
to identify them, including by forming a strong
partnership with Microsoft’s Office of Responsible
AI and by developing extensive tooling in PyRIT.
RAI harms are pervasive, but unlike most security
vulnerabilities, they are subjective and difficult to
measure. In this section, we discuss how our thinking
around RAI red teaming has developed.

Adversarial vs. benign
As illustrated in our ontology (see Figure 1), the Actor
is a key component of an adversarial attack. In the
context of RAI violations, we find that there are two
primary actors to consider:

1. An adversarial user who takes advantage of
techniques like character substitutions and
jailbreaks to deliberately subvert a system’s safety
guardrails and elicit harmful content, and

2. A benign user who inadvertently triggers the
generation of harmful content.

Even if the same content is generated in both
scenarios, the latter case is probably worse than the
former. Nonetheless, most AI safety research focuses
on developing attacks and defenses that assume

14Lessons from red teaming 100 generative AI products

adversarial intent, overlooking the many ways that
systems can fail “by accident” [31]. Case studies #3
and #4 provide examples of RAI harms that could
be encountered by users with no adversarial intent,
highlighting the importance of probing for these
scenarios.

RAI probing and scoring
In many cases, RAI harms are more ambiguous than
security vulnerabilities due to fundamental differences
between AI systems and traditional software. In
particular, even if an operation identifies a prompt
that elicits a harmful response, there are still several
key unknowns. First, due to the probabilistic nature
of GenAI models, we might not know how likely this
prompt, or similar prompts, are to elicit a harmful
response. Second, given our limited understanding
of the internal workings of complex models, we have
little insight into why this prompt elicited harmful
content and what other prompting strategies might
induce similar behavior. Third, the very notion of
harm in this context can be highly subjective and
requires detailed policy that covers a wide range of
scenarios to evaluate. By contrast, traditional security
vulnerabilities are usually reproducible, explainable,
and straightforward to assess in terms of severity.

Currently, most approaches for RAI probing and
scoring involve curating prompt datasets and
analyzing model responses. The Microsoft AIRT
leverages tools in PyRIT to perform these tasks using
a combination of manual and automated methods.
We also draw an important distinction between RAI
red teaming and safety benchmarking on datasets
like DecodingTrust [44] and Toxigen [12], which is
conducted by partner teams. As discussed in Lesson
3, our goal is to extend RAI testing beyond existing
evaluations by tailoring our red teaming to specific
applications and defining new categories of harm.

Lesson 7:
LLMs amplify existing security
risks and introduce new ones
The integration of generative AI models into a variety
of applications has introduced novel attack vectors
and shifted the security risk landscape. However,
many discussions around GenAI security overlook
existing vulnerabilities. As elaborated in Lesson 2,
attacks that target end-to-end systems, rather than
just underlying models, often work best in practice.

We therefore encourage AI red teams to consider
both existing (typically system-level) and novel
(typically model-level) risks.

Existing security risks
Application security risks often stem from improper
security engineering practices including outdated
dependencies, improper error handling, lack of input/
output sanitization, credentials in source, insecure
packet encryption, etc. These vulnerabilities can have
major consequences. For example, Weiss et al. [49]
discovered a token-length side channel in GPT-4
and Microsoft Copilot that enabled an adversary to
accurately reconstruct encrypted LLM responses and
infer private user interactions. Notably, this attack did
not exploit any weakness in the underlying AI model
and could only be mitigated by more secure methods
of data transmission. In case study #5, we provide an
example of a well-known security vulnerability (SSRF)
identified by one of our operations.

Model-level weaknesses
Of course, AI models also introduce new security
vulnerabilities and have expanded the attack surface.
For example, AI systems that use retrieval augmented
generation (RAG) architectures are often susceptible
to cross-prompt injection attacks (XPIA), which hide
malicious instructions in documents, exploiting the
fact that LLMs are trained to follow user instructions
and struggle to distinguish among multiple inputs
[13]. We have leveraged this attack in a variety of
operations to alter model behavior and exfiltrate
private data. Better defenses will likely rely on both
system-level mitigations (e.g., input sanitization)
and model-level improvements (e.g., instruction
hierarchies [43]).

While techniques like these are helpful, it is important
to remember that they can only mitigate, and not
eliminate, security risk. Due to fundamental limitations
of language models [50], one must assume that if an
LLM is supplied with untrusted input, it will produce
arbitrary output. When that input includes private
information, one must also assume that the model
will output private information. In the next section,
we discuss how these limitations inform our thinking
around how to develop AI systems that are as safe
and secure as possible.

15Lessons from red teaming 100 generative AI products

Outdated FFmpeg
with SSRF

vulnerability
in GenAI Video

Service
4. Sends an HTTP request to

an internal endpoint2. Starts a video
processing job

1.	Upload	special	file

3. Request from
Blob Storage

Case study #5:
SSRF in a video-processing
GenAI application
In this investigation, we analyzed a GenAI-based
video processing system for traditional security
vulnerabilities, focusing on risks associated with
outdated components. Specifically, we found that
the system’s use of an outdated FFmpeg version
introduced a server-side request forgery (SSRF)
vulnerability. This flaw allowed an attacker to craft
malicious video files and upload them to the GenAI
service, potentially accessing internal resources and
escalating privileges within the system.

To address this issue, the GenAI service updated
the FFmpeg component to a secure version. In
addition, the component was added to an isolated
environment, preventing the system from accessing
network resources and mitigating potential SSRF
threats. While SSRF is a known vulnerability, this case
underscores the importance of regularly updating and
isolating critical dependencies to maintain the security
of modern GenAI applications.

System: GenAI application

Actor: Adversarial user

Tactic 1: Reconnaissance

Technique 1: T1595 - Active Scanning

Tactic 2: Initial Access

Technique 2: T1190 - Exploit Public-Facing Application

Tactic 3: Privilege Escalation

Technique 3: T1068 - Exploitation for Privilege Escalation

Procedure:

1. Scan services used by the application.

2. Craft a malicious m3u8 file.

3. Send file to the service.

4. Monitor for API response with details of internal
resources.

Weakness: CWE-918: Server-Side Request Forgery (SSRF)

Impact: Unauthorized privilege escalation

Figure 7: Illustration of the SSRF vulnerability in the GenAI application.

16Lessons from red teaming 100 generative AI products

Lesson 8:
The work of securing AI systems
will never be complete
In the AI safety community, there is a tendency to
frame the types of vulnerabilities described in this
paper as purely technical problems. Indeed, the letter
on the homepage of Safe Superintelligence Inc., a
venture launched by Sutskever et al. [40] states:

“We approach safety and capabilities in tandem,
as technical problems to be solved through
revolutionary engineering and scientific
breakthroughs. We plan to advance capabilities as
fast as possible while making sure our safety always
remains ahead. This way, we can scale in peace.“

Engineering and scientific breakthroughs are much
needed and will certainly help mitigate the risks of
powerful AI systems. However, the idea that it is
possible to guarantee or “solve” AI safety through
technical advances alone is unrealistic and overlooks
the roles that can be played by economics, break-fix
cycles, and regulation.

Economics of cybersecurity
A well-known epigram in cybersecurity is that “no
system is completely foolproof” [2]. Even if a system is
engineered to be as secure as possible, it will always
be subject to the fallibility of humans and vulnerable
to sufficiently well-resourced adversaries. Therefore,
the goal of operational cybersecurity is to increase
the cost required to successfully attack a system
(ideally, well beyond the value that would be gained
by the attacker) [2, 26]. Fundamental limitations of AI
models give rise to similar cost-benefit tradeoffs in
the context of AI alignment. For example, it has been
demonstrated theoretically [50] and experimentally [9]
that for any output which has a non-zero probability
of being generated by an LLM, there exists a
sufficiently long prompt that will elicit this response.
Techniques like reinforcement learning from human
feedback (RLHF) therefore make it more difficult,
but by no means impossible, to jailbreak models.
Currently, the cost of jailbreaking most models is low,
which explains why real-world adversaries usually do
not use expensive attacks to achieve their objectives.

Break-fix cycles
In the absence of safety and security guarantees,
we need methods to develop AI systems that are as
difficult to break as possible. One way to do this is
using break-fix cycles, which perform multiple rounds
of red teaming and mitigation until the system is
robust to a wide range of attacks. We applied this
approach to safety-align Microsoft’s Phi-3 language
models and covered a wide variety of harms and
scenarios [11]. Given that mitigations may also
inadvertently introduce new risks, purple teaming
methods that continually apply both offensive and
defensive strategies [3] may be more effective at
raising the cost of attacks than a single round of red
teaming.

Policy and regulation
Finally, regulation can also raise the cost of an
attack in multiple ways. For example, it can require
organizations to adhere to stringent security
practices, creating better defenses across the industry.
Laws can also deter attackers by establishing clear
consequences for engaging in illegal activities.
Regulating the development and usage of AI is
complicated, and governments around the world
are deliberating on how to control these powerful
technologies without stifling innovation. Even if it
were possible to guarantee the adherence of an AI
system to some agreed upon set of rules, those rules
will inevitably change over time in response to shifting
priorities.

The work of building safe and secure AI systems will
never be complete. But by raising the cost of attacks,
we believe that the prompt injections of today will
eventually become the buffer overflows of the early
2000s – though not eliminated entirely, now largely
mitigated through defense-in-depth measures and
secure-first design.

17Lessons from red teaming 100 generative AI products

Open questions
Based on what we have learned about AI red teaming over the past few years, we would like to highlight several
open questions for future research:

1. AI red teams must constantly update their practices based on novel capabilities and emerging harm areas. In
particular, how should we probe for dangerous capabilities in LLMs such as persuasion, deception, and replication
[29]? Further, what novel risks should we probe for in video generation models and what capabilities may emerge
in models more advanced than the current state-of-the-art?

2. As models become increasingly multilingual and are deployed around the world, how do we translate existing AI
red teaming practices into different linguistic and cultural contexts? For example, can we launch open-source red
teaming initiatives that draw upon the expertise of people from many different backgrounds?

3. In what ways should AI red teaming practices be standardized so that organizations can clearly communicate
their methods and findings? We believe that the threat model ontology described in this paper is a step in the
right direction but recognize that individual frameworks are often overly restrictive. We encourage other AI red
teams to treat our ontology in a modular fashion and to develop additional tools that make findings easier to
summarize, track, and communicate.

Conclusion
AI red teaming is a nascent and rapidly evolving practice for identifying safety and security risks posed by AI
systems. As companies, research institutions, and governments around the world grapple with the question of how
to conduct AI risk assessments, we provide practical recommendations based on our experience red teaming over
100 GenAI products at Microsoft. We share our internal threat model ontology, eight main lessons learned, and five
case studies, focusing on how to align red teaming efforts with harms that are likely to occur in the real world. We
encourage others to build upon these lessons and to address the open questions we have highlighted.

Acknowledgements
We thank Jina Suh, Steph Ballard, Felicity Scott-Milligan, Maggie Engler, Owen Larter, Andrew Berkley, Alex Kessler,
Brian Wesolowski, and eric douglas for their valuable feedback on this paper. We are also very grateful to Quy
Nguyen, Tina Romeo, Hilary Solan, and the Microsoft thought leadership team that made this publication possible.

18Lessons from red teaming 100 generative AI products

References
1. Ahuja, K., Diddee, H., Hada, R., Ochieng, M., Ramesh, K., Jain,

P., Nambi, A., Ganu, T., Segal,S., Axmed, M., Bali, K., & Sitaram,
S. (2023). Mega: Multilingual evaluation of generative ai.

2. Apruzzese, G., Anderson, H. S., Dambra, S., Freeman, D.,
Pierazzi, F., & Roundy, K. A. (2022). “real attackers don’t
compute gradients”: Bridging the gap between adversarial ml
research and Practice.

3. Bhatt, M., Chennabasappa, S., Nikolaidis, C., Wan, S., Evtimov,
I., Gabi, D., Song, D., Ahmad, F., Aschermann, C., Fontana, L.,
Frolov, S., Giri, R. P., Kapil, D., Kozyrakis, Y., LeBlanc, D., Milazzo,
J., Straumann, A., Synnaeve, G., Vontimitta, V., Whitman, S.,
& Saxe, J. (2023). Purple llama cyberseceval: A secure coding
benchmark for language models.

4. Birhane, A., Steed, R., Ojewale, V., Vecchione, B., & Raji, I.
D. (2024). Ai auditing: The broken bus on the road to ai
accountability.

5. Blevins, T. & Zettlemoyer, L. (2022). Language contamination
helps explains the cross-lingual capabilities of English
pretrained models. In Y. Goldberg, Z. Kozareva, & Y. Zhang
(Eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (pp.3563–3574). Abu
Dhabi, United Arab Emirates: Association for Computational
Linguistics.

6. Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J., &
Wong, E. (2024). Jailbreaking black box large language models
in twenty queries.

7. Derczynski, L., Galinkin, E., Martin, J., Majumdar, S., & Inie,
N. (2024). garak: A framework for security probing large
language models.

8. Feffer, M., Sinha, A., Deng, W. H., Lipton, Z. C., & Heidari, H.
(2024). Red-teaming for generative ai: Silver bullet or security
theater?

9. Geiping, J., Stein, A., Shu, M., Saifullah, K., Wen, Y., &
Goldstein, T. (2024). Coercing llms to do and reveal (almost)
anything.

10. Glasbrenner, J., Booth, H., Manville, K., Sexton, J., Chisholm,
M. A., Choy, H., Hand, A., Hodges, B., Scemama, P., Cousin,
D., Trapnell, E., Trapnell, M., Huang, H., Rowe, P., & Byrne, A.
(2024). Dioptra test platform. Accessed: 2024-09-10.

11. [11] Haider, E., Perez-Becker, D., Portet, T., Madan, P., Garg, A.,
Ashfaq, A., Majercak, D., Wen, W., Kim, D., Yang, Z., Zhang, J.,
Sharma, H., Bullwinkel, B., Pouliot, M., Minnich, A., Chawla,
S., Herrera, S., Warreth, S., Engler, M., Lopez, G., Chikanov, N.,
Dheekonda, R. S. R., Jagdagdorj, B.-E., Lutz, R., Lundeen, R.,
Westerhoff, T., Bryan, P., Seifert, C., Kumar, R. S. S., Berkley,
A., & Kessler, A. (2024). Phi-3 safety post-training: Aligning
language models with a “break-fix” cycle.

12. Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., &
Kamar, E. (2022). Toxigen: A large-scale machine-generated
dataset for adversarial and implicit hate speech detection.

13. Hines, K., Lopez, G., Hall, M., Zarfati, F., Zunger, Y., & Kiciman,
E. (2024). Defending against indirect prompt injection attacks
with spotlighting.

14. Jain, D., Kumar, P., Gehman, S., Zhou, X., Hartvigsen, T., & Sap,
M. (2024). Polyglotoxici-typrompts: Multilingual evaluation
of neural toxic degeneration in large language models. ArXiv,
Abs/2405.09373.

15. Ji, J., Qiu, T., Chen, B., Zhang, B., Lou, H., Wang, K., Duan, Y.,
He, Z., Zhou, J., Zhang, Z., Zeng, F., Ng, K. Y., Dai, J., Pan, X.,
O’Gara, A., Lei, Y., Xu, H., Tse, B., Fu, J., McAleer, S., Yang, Y.,
Wang, Y., Zhu, S.-C., Guo, Y., & Gao, W. (2024). Ai alignment: A
comprehensive survey.

16. Jiang, F., Xu, Z., Niu, L., Xiang, Z., Ramasubramanian, B., Li, B.,
& Poovendran, R. (2024a). Artprompt: Ascii art-based jailbreak
attacks against aligned llms.

17. Jiang, L., Rao, K., Han, S., Ettinger, A., Brahman, F., Kumar,
S., Mireshghallah, N., Lu, X., Sap, M., Choi, Y., & Dziri, N.
(2024b). Wildteaming at scale: From in-the-wild jailbreaks to
(adversarially) safer language models.

18. Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess,
B., Child, R., Gray, S., Radford, A., Wu, J., & Amodei, D. (2020).
Scaling laws for neural language models.

19. Li, N., Pan, A., Gopal, A., Yue, S., Berrios, D., Gatti, A., Li, J.
D., Dombrowski, A.-K., Goel, S., Phan, L., Mukobi, G., Helm-
Burger, N., Lababidi, R., Justen, L., Liu, A. B., Chen, M., Barrass,
I., Zhang, O., Zhu, X., Tamirisa, R., Bharathi, B., Khoja, A., Zhao,
Z., Herbert-Voss, A., Breuer, C. B., Marks, S., Patel, O., Zou, A.,
Mazeika, M., Wang, Z., Oswal, P., Lin, W., Hunt, A. A., Tienken-
Harder, J., Shih, K. Y., Talley, K., Guan, J., Kaplan, R., Steneker,
I., Campbell, D., Jokubaitis, B., Levinson, A., Wang, J., Qian, W.,
Karmakar, K. K., Basart, S., Fitz, S., Levine, M., Kumaraguru, P.,
Tupakula, U., Varadharajan, V., Wang, R., Shoshitaishvili, Y., Ba,
J., Esvelt, K. M., Wang, A., & Hendrycks, D. (2024). The wmdp
benchmark: Measuring and reducing malicious use with
unlearning.

20. Lin, S., Hilton, J., & Evans, O. (2022). Truthfulqa: Measuring
how models mimic human Falsehoods.

21. Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Guo, R., Cheng, H.,
Klochkov, Y., Taufiq, M. F., & Li, H. (2024). Trustworthy llms: a
survey and guideline for evaluating large language models’
alignment.

22. Marchal, N., Xu, R., Elasmar, R., Gabriel, I., Goldberg, B., &
Isaac, W. (2024). Generative ai misuse: A taxonomy of tactics
and insights from real-world data.

23. Meek, T., Barham, H., Beltaif, N., Kaadoor, A., & Akhter, T.
(2016). Managing the ethical and risk implications of rapid
advances in artificial intelligence: A literature review. In
2016 Portland International Conference on Management of
Engineering and Technology (PICMET) (pp. 682–693).

24. Mehrotra, A., Zampetakis, M., Kassianik, P., Nelson, B.,
Anderson, H., Singer, Y., & Karbasi, A. (2024). Tree of attacks:
Jailbreaking black-box llms automatically.

25. Microsoft (2022). Microsoft responsible ai standard, v2.

26. Moore, T. (2010). The economics of cybersecurity: Principles
and policy options. International Journal of Critical
Infrastructure Protection, 3(3), 103–117.

27. Munoz, G. D. L., Minnich, A. J., Lutz, R., Lundeen, R.,
Dheekonda, R. S. R., Chikanov, N., Jagdagdorj, B.-E., Pouliot,
M., Chawla, S., Maxwell, W., Bullwinkel, B., Pratt, K., de Gruyter,
J., Siska, C., Bryan, P., Westerhoff, T., Kawaguchi, C., Seifert,
C., Kumar, R. S. S., & Zunger, Y. (2024). Pyrit: A framework for
security risk identification and red teaming in generative ai
system.

19Lessons from red teaming 100 generative AI products

28. Pantazopoulos, G., Parekh, A., Nikandrou, M., & Suglia,
A. (2024). Learning to see but forgetting to follow: Visual
instruction tuning makes llms more prone to jailbreak attacks.

29. Phuong, M., Aitchison, M., Catt, E., Cogan, S., Kaskasoli, A.,
Krakovna, V., Lindner, D., Rahtz, M., Assael, Y., Hodkinson, S.,
Howard, H., Lieberum, T., Kumar, R., Raad, M. A., Webson, A.,
Ho, L., Lin, S., Farquhar, S., Hutter, M., Deletang, G., Ruoss,
A., El-Sayed, S., Brown, S., Dragan, A., Shah, R., Dafoe, A., &
Shevlane, T. (2024). Evaluating frontier models for dangerous
Capabilities.

30. Raji, I. D., Bender, E. M., Paullada, A., Denton, E., & Hanna,
A. (2021). Ai and the everything in the whole wide world
benchmark.

31. Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022). The
fallacy of ai functionality. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency,
FAccT ’22 (pp. 959–972). New York, NY, USA: Association for
Computing Machinery.

32. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T.,
Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020).
Closing the ai accountability gap: Defining an end-to-end
framework for internal algorithmic auditing.

33. Ren, R., Basart, S., Khoja, A., Gatti, A., Phan, L., Yin, X., Mazeika,
M., Pan, A., Mukobi, G., Kim, R. H., Fitz, S., & Hendrycks, D.
(2024). Safetywashing: Do ai safety benchmarks actually
measure safety progress?

34. Russinovich, M., Salem, A., & Eldan, R. (2024). Great, now write
an article about that: The crescendo multi-turn llm jailbreak
attack.

35. Saghiri, A. M., Vahidipour, S. M., Jabbarpour, M. R., Sookhak,
M., & Forestiero, A. (2022). A survey of artificial intelligence
challenges: Analyzing the definitions, relationships, and
evolutions. Applied Sciences, 12(8).

36. Shelby, R., Rismani, S., Henne, K., Moon, A., Rostamzadeh, N.,
Nicholas, P., Yilla-Akbari, N., Gallegos, J., Smart, A., Garcia, E.,
& Virk, G. (2023). Sociotechnical harms of algorithmic systems:
Scoping a taxonomy for harm reduction. In Proceedings of
the 2023 AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’23 (pp. 723–741). New York, NY, USA: Association for
Computing Machinery.

37. Slattery, P., Saeri, A., Grundy, E., Graham, J., Noetel, M., Uuk,
R., Dao, J., Pour, S., Casper, S., & Thompson, N. (2024). The ai
risk repository: A comprehensive meta-review, database, and
taxonomy of risks from artificial intelligence.

38. Smith, B., Browne, C., & Gates, B. (2019). Tools and Weapons:
The Promise and the Peril of the Digital Age. Penguin
Publishing Group.

39. Solaiman, I., Talat, Z., Agnew, W., Ahmad, L., Baker, D.,
Blodgett, S. L., Chen, C., au2, H. D. I., Dodge, J., Duan, I., Evans,
E., Friedrich, F., Ghosh, A., Gohar, U., Hooker, S., Jernite, Y.,
Kalluri, R., Lusoli, A., Leidinger, A., Lin, M., Lin, X., Luccioni,
S., Mickel, J., Mitchell, M., Newman, J., Ovalle, A., Png, M.-T.,
Singh, S., Strait, A., Struppek, L., & Subramonian, A. (2024).
Evaluating the social impact of generative ai systems in
systems and society.

40. Sutskever, I., Gross, D., & Levy, D. (2024). Safe
superintelligence inc.

41. Vassilev, A., Oprea, A., Fordyce, A., & Anderson, H. (2024).
Adversarial machine learning: A taxonomy and terminology
of attacks and mitigations. In NIST Artificial Intelligence (AI)
Report Gaithersburg, MD, USA: National Institute of Standards
and Technology.

42. Verma, A., Krishna, S., Gehrmann, S., Seshadri, M., Pradhan,
A., Ault, T., Barrett, L., Rabinowitz, D., Doucette, J., & Phan, N.
(2024). Operationalizing a threat model for red-teaming large
language models (llms).

43. Wallace, E., Xiao, K., Leike, R., Weng, L., Heidecke, J., & Beutel,
A. (2024). The instruction hierarchy: Training llms to prioritize
privileged instructions.

44. Wang, B., Chen, W., Pei, H., Xie, C., Kang, M., Zhang, C., Xu,
C., Xiong, Z., Dutta, R., Schaeffer, R., Truong, S. T., Arora,
S., Mazeika, M., Hendrycks, D., Lin, Z., Cheng, Y., Koyejo, S.,
Song, D., & Li, B. (2024). Decodingtrust: A comprehensive
assessment of trustworthiness in gpt models.

45. Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How
does llm safety training fail?

46. Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang,
P.-S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton,
Z., Brown, S., Hawkins, W., Stepleton, T., Biles, C., Birhane, A.,
Haas, J., Rimell, L., Hendricks, L. A., Isaac, W., Legassick, S.,
Irving, G., & Gabriel, I. (2021). Ethical and social risks of harm
from language models.

47. Weidinger, L., Rauh, M., Marchal, N., Manzini, A., Hendricks, L.
A., Mateos-Garcia, J., Bergman, S., Kay, J., Griffin, C., Bariach,
B., Gabriel, I., Rieser, V., & Isaac, W. (2023). Sociotechnical
safety evaluation of generative ai systems.

48. Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S.,
Mellor, J., Glaese, A., Cheng, M., Balle, B., Kasirzadeh, A., Biles,
C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane,
A., Hendricks, L. A., Rimell, L., Isaac, W., Haas, J., Legassick,
S., Irving, G., & Gabriel, I. (2022). Taxonomy of risks posed by
language models. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, FAccT ’22 (pp.
214–229). New York, NY, USA: Association for Computing
Machinery.

49. Weiss, R., Ayzenshteyn, D., Amit, G., & Mirsky, Y. (2024). What
was your prompt? a remote keylogging attack on ai assistants.

50. Wolf, Y., Wies, N., Avnery, O., Levine, Y., & Shashua, A. (2024).
Fundamental limitations of alignment in large language
models.

51. Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang,
Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang, H., Gonzalez, J. E., &
Stoica, I. (2023). Judging llm-as-a-judge with mt-bench and
chatbot arena.

52. Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S., Luan, Y., Zhou,
D., & Hou, L. (2023). Instruction-following evaluation for large
language models.

53. Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z., &
Fredrikson, M. (2023). Universal and transferable adversarial
attacks on aligned language models.

20Lessons from red teaming 100 generative AI products

©2025 Microsoft Corporation. All rights reserved. This document is provided “as-is.” Information and views
expressed in this document, including URL and other Internet website references, may change without notice.
You bear the risk of using it. This document does not provide you with any legal rights to any intellectual
property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

	Lessons from
 red teaming 100
 generative AI products
	Authors
	Table of contents
	Abstract
	Introduction
	AI threat model ontology
	Red teaming operations
	Lessons
	Case study #1:
 Jailbreaking a vision language model
 to generate hazardous content
	Case study #2:
 Assessing how an LLM could
 be used to automate scams
	Case study #3:
 Evaluating how a chatbot responds to a user in distress
	Case study #4:
 Probing a text-to-image generator for gender bias
	Case study #5:
 SSRF in a video-processing
 GenAI application
	Open questions
	Conclusion

Accessibility Report

		Filename:

		MS_AIRT_Lessons_eBook.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

